首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   11篇
  国内免费   4篇
测绘学   9篇
大气科学   17篇
地球物理   65篇
地质学   99篇
海洋学   9篇
天文学   4篇
综合类   6篇
自然地理   8篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   21篇
  2016年   18篇
  2015年   15篇
  2014年   18篇
  2013年   30篇
  2012年   12篇
  2011年   18篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
41.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   
42.
One of the main problems in reservoirs is sedimentation which reduces the operating life of dams if a proper plan and analysis method are not in place.The techniques to manage sediment in reservoirs include several sustainable management techniques that route sediment through or around the reservoir.One of the main economical methods in arid and semi-arid regions is pressurized flushing using moderate drawdown of the water level of the reservoir to evacuate sediment deposited behind dams.In the current study,the effect of a new structure called a dendritic bottomless extended(DBE)outlet structure at three angles of 30°,45°,and 60°on pressurized flushing efficiency was investigated.Consequently,45 experiments were designed for three discharge rates (Qo),three sediment levels(Hs),four types of structure,and a no-structure condition(reference test).The results indicated that the DBE structure with a 30°angle between the branches,a sedimentary dimensionless index of Hs/Do=4.59,and a flow dimensionless index of Qo=/√gD05=1:43(where g is the acceleration of gravity and Do is the diameter of the bottom outlet)lead to 10-fold increase in the sediment flushing cone dimensions and sediment removal efficiency compared to the results of the reference test.Finally,according to a statistical analysis of the results,a dimensionless equation for calculating the sediment flushing cone dimensions was developed for the tested sediment characteristics.  相似文献   
43.
Matching pursuit belongs to the category of spectral decomposition approaches that use a pre-defined discrete wavelet dictionary in order to decompose a signal adaptively. Although disengaged from windowing issues, matching point demands high computational costs as extraction of all local structure of signal requires a large size dictionary. Thus in order to find the best match wavelet, it is required to search the whole space. To reduce the computational cost of greedy matching pursuit, two artificial intelligence methods, (1) quantum inspired evolutionary algorithm and (2) particle swarm optimization, are introduced for two successive steps: (a) initial estimation and (b) optimization of wavelet parameters. We call this algorithm quantum swarm evolutionary matching pursuit. Quantum swarm evolutionary matching pursuit starts with a small colony of population at which each individual, is potentially a transformed form of a time-frequency atom. To attain maximum pursuit of the potential candidate wavelets with the residual, the colony members are adjusted in an evolutionary way. In addition, the quantum computing concepts such as quantum bit, quantum gate, and superposition of states are introduced into the method. The algorithm parameters such as social and cognitive learning factors, population size and global migration period are optimized using seismic signals. In applying matching pursuit to geophysical data, typically complex trace attributes are used for initial estimation of wavelet parameters, however, in this study it was shown that using complex trace attributes are sensitive to noisy data and would have lower rate of convergence. The algorithm performance over noisy signals, using non-orthogonal dictionaries are investigated and compared with other methods such as orthogonal matching pursuit. The results illustrate that quantum swarm evolutionary matching pursuit has the least sensitivity to noise and higher rate of convergence. Finally, the algorithm is applied to both modelled seismograms and real data for detection of low frequency anomalies to validate the findings.  相似文献   
44.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
45.
The complex stream bank profiles in alluvial channels and rivers that are formed after reaching equilibrium has been a popular topic of research for many geomorphologists and river engineers. The entropy theory has recently been successfully applied to this problem. However, the existing methods restrict the further application of the entropy parameter to determine the cross-section slope of the river banks. To solve this limitation, we introduce a novel approach in the extraction of the equation based on the calculation of the entropy parameter (λ) and the transverse slope of the bank profile at threshold channel conditions. The effects of different hydraulic and geometric parameters are evaluated on a variation of the entropy parameter. Sensitivity analysis on the parameters affecting the entropy parameter shows that the most effective parameter on the λ-slope multiplier is the maximum slope of the bank profile and the dimensionless lateral distance of the river banks.  相似文献   
46.
Studia Geophysica et Geodaetica - We examine the potential of magnetic susceptibility measurements to discriminate different soil drainage classes in the Gandoman region, central Iran. Four soil...  相似文献   
47.
Arabian Journal of Geosciences - Dust storms are one of the major environmental disasters in the arid regions of Middle East, occurring in very high frequency. As a result, monitoring dust storms...  相似文献   
48.
Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions. Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in São Paulo City, Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by ambient temperature variation. In order to obtain better contrast between background and metallic targets it was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation between conductivity/susceptibility and temperature intending comparative studies. The correction of temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as well deeper targets were also improved.  相似文献   
49.
Iran anticyclone is one of the main features of the summer circulation over the Middle East in the middle and upper troposphere. To examine the effect of the Zagros Mountains on the formation and maintenance of the Iran anticyclone, an experiment was conducted by Regional Climate Model (RegCM4) in an area between 22°?C44°N and 35°?C70°E with a 40?km horizontal grid spacing. The NCEP/NCAR re-analysis data set were used to provide the initial and lateral boundary conditions in a control run and in a simulation run by removing the Zagros Mountains. The result reveals that the Zagros Mountains have an important effect on the formation and maintenance of the low-level cyclonic circulation and mid-level anticyclonic circulation in summer. Examining the diabatic heating shows that the elimination of the Zagros Mountains causes a significant change in the heating values and its spatial distributions over the study area. Comparing the diabatic heating terms, the vertical advection term has the main contribution to the total heating. In the absence of the Zagros Mountains, the vertical advection and the mid-troposphere anticyclonic circulation are apparently weak and, therefore, the Iran subtropical anticyclone vanishes over the west of Iran. The study indicates that the Zagros Mountains as an elevated heat source have the main impact in the formation of a thermally driven circulation over the Middle East.  相似文献   
50.
The potential of MCM‐41 for the removal of cationic dyes from water solution was evaluated using sodium dodecyl sulfate (SDS) for the surface modification of this mesoporous material. Admicelle structures formed on the surface of the calcined MCM‐41 are capable of removing organic pollutants and cationic species from water environment. The structural, textural, and surface chemical characteristics of the prepared SDS‐modified MCM‐41 (SDS‐MCM‐41) were studied. The adsorption capacity of SDS‐MCM‐41 was evaluated for methylene blue (MB) as a target cationic dye. Equilibrium adsorption isotherm data were manipulated employing nonlinear regression analysis. The Langmuir, Freundlich, and Sips isotherm models were examined. The adsorption data were well fitted to both Langmuir and Sips isotherm models. The maximum adsorption capacity of SDS‐MCM‐41 for MB, based on Langmuir and Sips models, were 290.8 and 297.3 mg g?1, respectively. Ethanol was found to be an effective solvent for partial regeneration of the adsorbent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号